INTEGRATED CIRCUITS
DATA SHEET
TDA1576T
FM/IF amplifier/demodulator circuit
1998 Nov 18
Product specification
Supersedes data of February 1991
File under Integrated Circuits, IC01
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...
field strength
1 mA
detune
R
S
voltage
2 V (RMS)
zero adjustment
of
field strength
indicator
reference
voltage
3.6 kΩ
1 nF
R
V
S
iIF
0.47 µF
0.1 µF
0.1 µF
FB1
+4.9 V
V
V
V
V
V
V
n.c.
11
V
V
GND
20
iIF
17
F0
F
ref
o(det)
i(det)
12
FB2
18
19
16
15
14
13
4-STAGE
LIMITER/
AMPLIFIER
REFERENCE
VOLTAGE
25
kΩ
LEVEL DETECTOR
25
kΩ
MUTE
ATTENUATOR
0.5
mA
DETUNE
DETECTOR
TDA1576T
V1
V2
QUADRATURE
V2
DEMODULATOR
3.7 kΩ
3.7 kΩ
8.3 kΩ
1
2
3
4
5
6
7
8
9
10
V
C
IF1
RES1 FMON RES2
FM
IF2
V
V
n.c.
P
PS
oAF1
oAF2
33 pF
+8.5 V
10 Ω
MEH139
V
P
on
0.1 µF
47 µF
6.8 nF
33 pF
560 pF
audio
outputs
Q
= 20
L
V
−V
AF
f
= 10.7 MHz
AF
o
Fig.1 Block diagram.
Philips Semiconductors
Product specification
FM/IF amplifier/demodulator circuit
TDA1576T
PINNING
SYMBOL PIN
DESCRIPTION
positive supply voltage
VP
1
2
3
4
5
6
7
8
9
CPS
smoothing capacitor of power supply
IF signal to resonant circuit
resonant circuit input 1
IF1
handbook, halfpage
RES1
FMON
RES2
IF2
V
1
2
3
4
5
6
7
8
9
20
19
18
17
16
15
14
13
12
GND
P
FM-ON, standby switch
C
V
PS
FB1
resonant circuit input 2
IF1
RES1
FMON
RES2
IF2
V
FB2
IF signal to resonant circuit
AF output voltage 1 (0° phase)
AF output voltage 2 (180° phase)
V
iIF
VoAF1
VoAF2
n.c.
V
F0
TDA1576T
V
F
10 not connected
11 not connected
n.c.
V
ref
Vi(det)
12 detune detector input voltage for
external audio reference
V
V
oAF1
o(det)
V
V
i(det)
oAF2
Vo(det)
Vref
13 detune detector output voltage
14 reference voltage output
15 level output for field strength
16 zero adjust voltage for field strength
17 FM/IF input signal voltage
18 DC feedback 2
n.c. 10
11 n.c.
MEH140
VF
VF0
ViIF
VFB2
VFB1
GND
19 DC feedback 1
Fig.2 Pin configuration.
20 ground (0 V)
1998 Nov 18
4
Philips Semiconductors
Product specification
FM/IF amplifier/demodulator circuit
TDA1576T
LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 134).
SYMBOL
PARAMETER
MIN.
MAX.
UNIT
VP
V2, 5, 16
Ptot
supply voltage (pin 1)
0
15
V
V
voltage on pins 2, 5 and 16
total power dissipation
0
VP
0
450
mW
°C
°C
Tstg
storage temperature
−55
−30
+150
+80
Tamb
operating ambient temperature
THERMAL CHARACTERISTICS
SYMBOL
PARAMETER
VALUE
85
UNIT
K/W
Rth j-a
thermal resistance from junction to ambient in free air
1998 Nov 18
5
Philips Semiconductors
Product specification
FM/IF amplifier/demodulator circuit
TDA1576T
CHARACTERISTICS
VP = 8.5 V; fIF = 10.7 MHz; RS = 60 Ω; fm = 400 Hz with ∆f = ±22.5 kHz; 50 µs de-emphasis (C8-9 = 6.8 nF);
amb = 25 °C and measurements taken in Fig.1; unless otherwise specified. The demodulator circuit is adjusted at
minimum second harmonic distortion for ViIF = 1 mV and a deviation ∆f = ±75 kHz.
T
SYMBOL
PARAMETER
supply voltage (pin 1)
supply current
CONDITIONS
MIN.
7.5
TYP.
8.5
MAX.
15
UNIT
VP
IP
V
V5 = V9 = V13 = 0
10
16
23
mA
Reference voltage
Vref
reference voltage (pin 14)
I14 = −1 mA
−
−
4.9
0.3
−
−
V
∆Vref
reference voltage dependence on
temperature
%/K
∆V14
----------------------
V14 × ∆T
I14
maximum output current
short-circuit current
4
6
7.5
mA
R14
I14 < 1.2 mA
−
60
150
Ω
∆V 14
∆I14
output resistor
------------
IF amplifier
ViIF(rms)
R17-18
input sensitivity (RMS value; pin 17)
input resistance
−3 dB before limiting
ViIF = 200 mV (RMS)
ViIF = 200 mV (RMS)
14
10
−
22
−
35
−
−
µV
kΩ
pF
C17-18
input capacitance
5
VoIF(p-p)
output voltage at pins 3 and 7
(peak-to-peak value)
Z3, 7 = 10 pF parallel to 610
1 MΩ
680
750
mV
R3-7
output resistance
200
250
300
Ω
Demodulator
R4-6
C4-6
R8, 9
V8, 9
input resistance
20
−
30
1
40
kΩ
pF
input capacitance
output resistance
2.5
4.5
±100
2.9
3.7
0
kΩ
mV
DC offset voltage on output pins at
V4-6 = 0
V5 > 3 V or V3-7 = 0 or
V13 < 0.3 V
−
demodulator efficiency
−
40
−
−
mV/°
∆ V
-------
∆ ϕ
∆V 8-9
∆ϕ
-------------
demodulator efficiency dependent on
supply voltage
−
6.2
mV/°
V 8-9
-----------------------------------------
∆ϕ (VP – 3VBE
)
V/V
DC voltage ratio
0.653
0.667
10−5
0.680
V/V
1/K
V 8 + V 9
-------------------
2V2
dependence on temperature
−
−
∆ V
-------
∆ T
V 8 + V 9
∆
-------------------
2V2
-----------------------
∆ T
1998 Nov 18
6
Philips Semiconductors
Product specification
FM/IF amplifier/demodulator circuit
TDA1576T
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Field strength output; see Fig.4
V15
output voltage
ViIF = 0
0
0.1
0.25
1.9
4.1
−
200
−
V
ViIF = 1 mV (RMS)
1.1
3.2
−
−
−
1.5
V
ViIF = 250 mV (RMS)
3.6
V
S
control steepness
0.85
150
0.3
V/dec
Ω
R15
output resistance
dependence on temperature
%/K
∆V
-------
∆T
∆V15
V iIF
=
----------------------
∆T × V15
V5 ≥ 3 V; V15 = 0 to 5 V
I15
standby operational cut-off current
−
−
10
µA
Zero level adjustment
V16
R16
S
internal bias voltage
−
−
260
19
−
−
mV
kΩ
input resistance
control steepness
0.87
1.0
1.2
V/V
ViIF = 100 mV;
∆V 15
∆V16
A =
------------
Detuning detector
I12
input bias current
−
6
20
30
100
nA
Z12
input impedance
−
MΩ
5 V
∆I12
Z 12
=
; see Fig.5
---------
output voltage ratio for
∆ϕ = ϕ(V3-7) −ϕ(V4-6) − 90°
V1 = V2 = 7.5 V;
R13-14 = 10 kΩ; pins 9
and 12 short-circuit;
see Fig.6
V 13
--------
V14
∆ϕ = 9.2° (43 kHz); Q = 20
∆ϕ = 3.5° (16 kHz); Q = 20
∆ϕ = 14° (65 kHz); Q = 20
maximum output current
cut-off current
V
9, 12 = 334 mV
V9, 12 = 138 mV
9, 12 = 501 mV
0.45
0.75
0.335
0.4
0.5
0.8
0.345
0.5
−
0.55
0.85
0.355
0.6
V/V
V/V
V/V
mA
nA
V
I13
V13 = 6 V; see Fig.7
V13 = 2.5 V; V9, 12 = 0
−
−100
Internal audio attenuation; see Fig.8
output voltage ratio
α = attenuation factor
α = 1 dB
V 13
--------
V14
0.11
0.095
−
0.12
0.1
0.06
−
0.13
0.105
−
V/V
V/V
V/V
nA
α = 7.2 dB
α ≥40 dB
V13 ≤ 0.1 V
I13
input current
−
−225
1998 Nov 18
7
Philips Semiconductors
Product specification
FM/IF amplifier/demodulator circuit
TDA1576T
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Standby switch; see Fig.9
V5
input voltage for FM on
2.4
2.5
−
3
V
V3, 7
----------------------
V3, 7(max)
= 0.9 ;
input voltage for FM off
linear range
−
−
2.9
V
350
−
mV
V19 = 0.3 V
I5
input current
V5 = 0 to 2 V
−
−
−
−
−
−
−100
1
µA
µA
mV/K
mV/K
V5 = 3.5 to 15 V
temperature dependence
FM on (3.5VBE
FM off (5VBE
)
7
−
−
V5
------
)
10
∆T
Supply voltage smoothing
V1-2
internal voltage drop
proportional to
V1 − 3VBE
80
210
8.3
400
mV
R1-2
internal resistor
5.8
10.8
kΩ
OPERATING CHARACTERISTICS
VP = 8.5 V; fIF = 10.7 MHz; RS = 60 Ω; fm = 400 Hz with ∆f = ±22.5 kHz; 50 µs de-emphasis (C8-9 = 6.8 nF);
Tamb = 25 °C and measurements taken in Fig.1; unless otherwise specified. The demodulator circuit is adjusted at
minimum second harmonic distortion with ViIF = 1 mV.
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
IF amplifier and demodulator
ViIF(rms)
input sensitivity (RMS value)
−3 dB before limiting
S/N = 26 dB
14
22
35
µV
−
−
60
−
10
−
−
75
−
µV
µV
mV
µV
S/N = 46 dB
55
VoAF(rms) AF output voltage (RMS value)
67
VoN
noise voltage for ViIF = 0 (RMS value;
pins 8 and 9)
RS = 300 Ω;
f = 250 to 15000 Hz
900
weighted noise voltage
signal-to-noise ratio (pins 8 and 9)
AM suppression
in accordance with
“DIN 45405”
−
−
−
2
−
−
−
mV
dB
dB
S/N
ViIF = 1 mV (RMS);
72
50
see Fig.3
αAM
ViIF = 0.5 to 200 mV;
FM: 70 Hz; ±15 kHz;
AM: 1 kHz; m = 30%
αFM
∆V8, 9
FM suppression for FM off
ViIF = 500 mV; V5 = 3 V 80
−
25
−
−
dB
AFC shift in relation to minimum second
harmonic distortion α2H
ViIF = 0.03 to 500 mV
−
mV
DC offset at second harmonic distortion
operating
−
−
−
0
±100
±50
−
mV
mV
%
mute or FM off
0
α3H
distortion for third harmonic
0.65
48
RR
ripple rejection Vripple = 200 mV on VP
f = 100 Hz
43
−
dB
1998 Nov 18
8
Philips Semiconductors
Product specification
FM/IF amplifier/demodulator circuit
TDA1576T
MEH166
20
V , V
8
9
0
(dB)
S + N
−20
−40
−60
−80
N
−6
−5
−4
−3
−2
−1
10
10
10
10
10
10
1
(V)
V
i 17 (rms)
Fig.3 AF output voltage level on pins 8 and 9 as a function of ViIF at VP = 8.5 V; fm = 1 kHz; QL = 20 with
de-emphasis.
MEH143
5
V
15
(V)
4
3
2
1
0
−6
−5
−4
−3
−2
−1
10
10
10
10
10
10
1
V
(V)
iIF (rms)
Fig.4 Field strength output (I16 = 0).
1998 Nov 18
9
Philips Semiconductors
Product specification
FM/IF amplifier/demodulator circuit
TDA1576T
MEH145
MEH144
1
handbook, halfpage
handbook, halfpage
I
12
V
/V
13 14
R
i
0.5
I
12
0
−1.2
−0.8
−0.4
0
0.4
0.8
1.2
V
9, 12
V
(V)
9, 12
Fig.5 Detuning input impedance.
Fig.6 Detuning curve.
MEH147
MEH146
0
1
handbook, halfpage
handbook, halfpage
αV
o
(dB)
I
13
−20
(mA)
0.5
−40
1.2
1
0.5
0
|V
|
9, 12
−60
−80
0
0
0.1
0.2
0.3
0
2
4
6
V
(V)
13
V
/V
13 14
Fig.7 Detuning output.
Fig.8 Internal audio attenuation.
1998 Nov 18
10
Philips Semiconductors
Product specification
FM/IF amplifier/demodulator circuit
TDA1576T
MEH148
2
handbook, halfpage
V
3-7
V
3-7 (max)
∆V
5
1
0
0
1
2
3
V
(V)
5
Fig.9 Standby switch.
33 pF
3
4
39 pF
(1)
(1)
560
pF
560
pF
1 kΩ
L2
TDA1576T
L1
390 Ω
6
7
39 pF
MBK240
33 pF
9
8
C
8-9
V
oAF
Adjustment of the demodulator circuit is obtained with an IF signal which is higher than the 3 dB limiting level; L2 should be short-circuited or detuned;
L1 should be adjusted to minimum d2 distortion, and then L2 to minimum d2 distortion.
(1) Coil data: L1 = L2 = 0.38 µH; Qo = 70; coil former KAN (C).
Fig.10 An example of the TDA1576T when using a demodulator with two tuned circuits.
1998 Nov 18
11
Philips Semiconductors
Product specification
FM/IF amplifier/demodulator circuit
TDA1576T
PACKAGE OUTLINE
SO20: plastic small outline package; 20 leads; body width 7.5 mm
SOT163-1
D
E
A
X
c
y
H
E
v
M
A
Z
20
11
Q
A
2
A
(A )
3
A
1
pin 1 index
θ
L
p
L
1
10
w
detail X
e
M
b
p
0
5
10 mm
scale
DIMENSIONS (inch dimensions are derived from the original mm dimensions)
A
max.
(1)
(1)
(1)
UNIT
A
A
A
b
c
D
E
e
H
L
L
Q
v
w
y
θ
1
2
3
p
E
p
Z
0.30
0.10
2.45
2.25
0.49
0.36
0.32
0.23
13.0
12.6
7.6
7.4
10.65
10.00
1.1
0.4
1.1
1.0
0.9
0.4
mm
2.65
0.25
0.01
1.27
0.050
1.4
0.25 0.25
0.01
0.1
8o
0o
0.012 0.096
0.004 0.089
0.019 0.013 0.51
0.014 0.009 0.49
0.30
0.29
0.419
0.394
0.043 0.043
0.016 0.039
0.035
0.016
inches 0.10
0.055
0.01 0.004
Note
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
REFERENCES
OUTLINE
EUROPEAN
PROJECTION
ISSUE DATE
VERSION
IEC
JEDEC
EIAJ
95-01-24
97-05-22
SOT163-1
075E04
MS-013AC
1998 Nov 18
12
Philips Semiconductors
Product specification
FM/IF amplifier/demodulator circuit
TDA1576T
• Use a double-wave soldering method comprising a
turbulent wave with high upward pressure followed by a
smooth laminar wave.
SOLDERING
Introduction to soldering surface mount packages
This text gives a very brief insight to a complex technology.
A more in-depth account of soldering ICs can be found in
our “Data Handbook IC26; Integrated Circuit Packages”
(document order number 9398 652 90011).
• For packages with leads on two sides and a pitch (e):
– larger than or equal to 1.27 mm, the footprint
longitudinal axis is preferred to be parallel to the
transport direction of the printed-circuit board;
There is no soldering method that is ideal for all surface
mount IC packages. Wave soldering is not always suitable
for surface mount ICs, or for printed-circuit boards with
high population densities. In these situations reflow
soldering is often used.
– smaller than 1.27 mm, the footprint longitudinal axis
must be parallel to the transport direction of the
printed-circuit board.
The footprint must incorporate solder thieves at the
downstream end.
• For packages with leads on four sides, the footprint must
be placed at a 45° angle to the transport direction of the
printed-circuit board. The footprint must incorporate
solder thieves downstream and at the side corners.
Reflow soldering
Reflow soldering requires solder paste (a suspension of
fine solder particles, flux and binding agent) to be applied
to the printed-circuit board by screen printing, stencilling or
pressure-syringe dispensing before package placement.
During placement and before soldering, the package must
be fixed with a droplet of adhesive. The adhesive can be
applied by screen printing, pin transfer or syringe
dispensing. The package can be soldered after the
adhesive is cured.
Several methods exist for reflowing; for example,
infrared/convection heating in a conveyor type oven.
Throughput times (preheating, soldering and cooling) vary
between 100 and 200 seconds depending on heating
method.
Typical dwell time is 4 seconds at 250 °C.
A mildly-activated flux will eliminate the need for removal
of corrosive residues in most applications.
Typical reflow peak temperatures range from
215 to 250 °C. The top-surface temperature of the
packages should preferable be kept below 230 °C.
Manual soldering
Fix the component by first soldering two
diagonally-opposite end leads. Use a low voltage (24 V or
less) soldering iron applied to the flat part of the lead.
Contact time must be limited to 10 seconds at up to
300 °C.
Wave soldering
Conventional single wave soldering is not recommended
for surface mount devices (SMDs) or printed-circuit boards
with a high component density, as solder bridging and
non-wetting can present major problems.
When using a dedicated tool, all other leads can be
soldered in one operation within 2 to 5 seconds between
270 and 320 °C.
To overcome these problems the double-wave soldering
method was specifically developed.
If wave soldering is used the following conditions must be
observed for optimal results:
1998 Nov 18
13
Philips Semiconductors
Product specification
FM/IF amplifier/demodulator circuit
TDA1576T
Suitability of surface mount IC packages for wave and reflow soldering methods
SOLDERING METHOD
PACKAGE
WAVE
REFLOW(1)
BGA, SQFP
not suitable
not suitable(2)
suitable
suitable
suitable
suitable
suitable
HLQFP, HSQFP, HSOP, SMS
PLCC(3), SO, SOJ
LQFP, QFP, TQFP
SSOP, TSSOP, VSO
suitable
not recommended(3)(4)
not recommended(5)
Notes
1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum
temperature (with respect to time) and body size of the package, there is a risk that internal or external package
cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the
Drypack information in the “Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”.
2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink
(at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).
3. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction.
The package footprint must incorporate solder thieves downstream and at the side corners.
4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm;
it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.
5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.
DEFINITIONS
Data sheet status
Objective specification
Preliminary specification
Product specification
This data sheet contains target or goal specifications for product development.
This data sheet contains preliminary data; supplementary data may be published later.
This data sheet contains final product specifications.
Limiting values
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation
of the device at these or at any other conditions above those given in the Characteristics sections of the specification
is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information
Where application information is given, it is advisory and does not form part of the specification.
LIFE SUPPORT APPLICATIONS
These products are not designed for use in life support appliances, devices, or systems where malfunction of these
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such
improper use or sale.
1998 Nov 18
14
Philips Semiconductors
Product specification
FM/IF amplifier/demodulator circuit
TDA1576T
NOTES
1998 Nov 18
15
Philips Semiconductors – a worldwide company
Argentina: see South America
Middle East: see Italy
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. +61 2 9805 4455, Fax. +61 2 9805 4466
Tel. +31 40 27 82785, Fax. +31 40 27 88399
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 160 1010,
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,
Fax. +43 160 101 1210
Tel. +64 9 849 4160, Fax. +64 9 849 7811
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,
Norway: Box 1, Manglerud 0612, OSLO,
220050 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773
Tel. +47 22 74 8000, Fax. +47 22 74 8341
Belgium: see The Netherlands
Pakistan: see Singapore
Brazil: see South America
Philippines: Philips Semiconductors Philippines Inc.,
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,
51 James Bourchier Blvd., 1407 SOFIA,
Tel. +359 2 689 211, Fax. +359 2 689 102
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA,
Tel. +48 22 612 2831, Fax. +48 22 612 2327
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,
Tel. +1 800 234 7381
Portugal: see Spain
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,
Tel. +852 2319 7888, Fax. +852 2319 7700
Romania: see Italy
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,
Tel. +7 095 755 6918, Fax. +7 095 755 6919
Colombia: see South America
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,
Czech Republic: see Austria
Tel. +65 350 2538, Fax. +65 251 6500
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,
Slovakia: see Austria
Tel. +45 32 88 2636, Fax. +45 31 57 0044
Slovenia: see Italy
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +358 9 615800, Fax. +358 9 61580920
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,
2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,
Tel. +27 11 470 5911, Fax. +27 11 470 5494
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,
Tel. +33 1 40 99 6161, Fax. +33 1 40 99 6427
South America: Al. Vicente Pinzon, 173, 6th floor,
04547-130 SÃO PAULO, SP, Brazil,
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,
Tel. +49 40 23 53 60, Fax. +49 40 23 536 300
Tel. +55 11 821 2333, Fax. +55 11 821 2382
Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,
Spain: Balmes 22, 08007 BARCELONA,
Tel. +30 1 4894 339/239, Fax. +30 1 4814 240
Tel. +34 93 301 6312, Fax. +34 93 301 4107
Hungary: see Austria
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,
Tel. +46 8 5985 2000, Fax. +46 8 5985 2745
India: Philips INDIA Ltd, Band Box Building, 2nd floor,
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,
Tel. +91 22 493 8541, Fax. +91 22 493 0966
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,
Tel. +41 1 488 2741 Fax. +41 1 488 3263
Indonesia: PT Philips Development Corporation, Semiconductors Division,
Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510,
Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,
TAIPEI, Taiwan Tel. +886 2 2134 2865, Fax. +886 2 2134 2874
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,
Tel. +66 2 745 4090, Fax. +66 2 398 0793
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. +353 1 7640 000, Fax. +353 1 7640 200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007
Tel. +90 212 279 2770, Fax. +90 212 282 6707
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,
20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,
TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5077
MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,
Tel. +82 2 709 1412, Fax. +82 2 709 1415
Tel. +1 800 234 7381
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,
Uruguay: see South America
Tel. +60 3 750 5214, Fax. +60 3 757 4880
Vietnam: see Singapore
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,
Tel. +9-5 800 234 7381
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. +381 11 625 344, Fax.+381 11 635 777
For all other countries apply to: Philips Semiconductors,
Internet: http://www.semiconductors.philips.com
International Marketing & Sales Communications, Building BE-p, P.O. Box 218,
5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825
© Philips Electronics N.V. 1998
SCA60
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license
under patent- or other industrial or intellectual property rights.
Printed in The Netherlands
545102/750/02/pp16
Date of release: 1998 Nov 18
Document order number: 9397 750 04823
|